• Українська
  • English
ISSN 2664-2441 (Online)
ISSN 2073-9583 (Print)

Novel constructional materials with an oriented porous structure – gazars

Metalozn. obrobka met., 2022, vol. 28 (102), 22-37
https://doi.org/10.15407/mom2022.02.022

Gnyloskurenko S.V., Candidate of Chemical Science (Ph.D.) Senior Researcher,  Head of the Department, expo@ptima.kiev.ua, ORCID: https://orcid.org/0000-0003-0201-7191
Kondratyuk S.Ye., Doctor of Technical Science, Professor, Leading Researcher,stkondrat@gmail.com, ORCID: https://orcid.org/0000-0002-4978-6740

Physico-Technological Institute of Metals and Alloys of NAS of Ukraine, Kyiv

UDC 669.017:62-405.8
Download: PDF

Summary

Modern construction metallic materials often work under conditions, where it is necessary to show properties uninherent to continuous materials. High–porous materials have a cellular structure and are characterized with low dencity, high specific stiffness that provides specific advantages above dense materials.
The paper reviews such materials with the oriented porous structure – gasars. The theoretical and technological bases of their manufacturing were first developed in Ukraine. Their difference from foamed metals by powder or liquid methods, which are formed under the action of gas–forming reagents, is noted.
The formation of gas pores in gasars occurs as a result of a gas–eutectic reaction with the formation of bubbles at the crystallization front in gas–metal systems due to changes in the solubility of gases. The morphology of the pore channels depends on many factors, including the intensity and direction of heat removal.
Techniques and equipment are considered, which provides control the macrostructure of the material with the formation of various morphologies – from large cavities, spherical pores to evenly distributed elongated channels of the same or variable cross–section and gradient monolithic porous structures. It is determined that most technologies use hydrogen as a pore formed gas, although there are examples of successful use of hydrocarbons (CH4), water vapor, nitrogen, ammonia and the like.
Over the years of research, scientists from different countries have developed methods for obtaining gasars not only on the basis of iron–carbon alloys but also aluminum, copper, nickel, titanium alloys. An analysis of the existing and future opportunities for gasars application noted that it depends on more complete study of gas–eutectic transformations and related processes in the crystallization of melts for their control and development of cost–effective technologies for such materials.
Keywords: gasars, oriented porous structure, gas–eutectic reaction, mechanical properties

References

  1. U.S. Patent 2,983,597. Metal foam and method for making, John Elliot et. all,  Filed March 19, 1956, Patented May 9,1961 [in English].
  2. U.S. Patent 3,297,431. Cellarized Metal and Method of Producing the Same, Ridgeway J.A., Filed June 2, 1965, Patented Jan. 10, 1967 [in English].
  3. U.S. Patent 4,713,277. Foamed Metal and Method for Producing the Same, Akiyama S. et al., Filed Jul. 18, 1986, Patented Dec. 15, 1987 [in English].
  4. Miyoshi T., Itoh M., Akiyama S., Kitahara A.,Adv. Eng. Mater, 2000, No. 2, pp. 179-183 [in English]. https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<179::AID-ADEM179>3.0.CO;2-G
  5. Nakamura T., Gnyloskurenko S.V.,  Sakamoto K., Byakova A.V., Ishikava R., Materials Transactions, 2002,Vol. 43, No. 5, pp. 1191-1196. [in English]. https://doi.org/10.2320/matertrans.43.1191
  6. Byakova A.V., Gnyloskurenko S.V., Sirko A.I., Milman Yu.V., Nakamura T., Materials Transactions, 2006, Vol. 47, No. 9, pp. 2131-2136 [in English]. https://doi.org/10.2320/matertrans.47.2131
  7. Patent No. 104367 Ukraine. Sposib oderzhannya spinenykh zlyvkiv z alyuminiyu ta alyuminiyevykh splaviv [Method of obtaining foamed ingots from aluminum and aluminum alloys], Byakova A.V., Vlasov A.O., Hnyloskurenko S.V., Kartuzov Ye.V., No. a2012 10505; zaiavl. 05.09.2012; opubl. 05.09.2012, Biul. No. 2/ 2014, 6 p.  [in Ukrainian].
  8. German Patent DE 40 18 360, J. Baumeister, Method for Producing Porous Metal Bodies, 29 May 1991 [in English].
  9. Byakova A.V., Sirko A.I., Mykhalenkov K.V., Milman Yu.V., Gnyloskurenko S.V., Nakamura T. Progress in aluminium foam technique: application of the carbonate foaming agent for Alporas and powder compact routes / in Book “Porous Metals and Metal Foaming Technology”. Eds. H. Nakajima, N. Kanetake, Tokyo: JIM Publ.,2005, pp. 273-278 [in English].
  10. Gaillard C., Despois J.F., Mortensen A., Materials Science and Engineering: A, 2004, Vol. 374, Issues 1-2, 15, pp. 250-262. [in English]. https://doi.org/10.1016/j.msea.2004.03.015
  11. Shcheretskyy O.A. Teoretychni ta tekhnolohichni osnovy oderzhannya lytykh zahotovok iz kompozytsiynykh materialiv na osnovi alyuminiyu ta tsyrkoniyu z dyspersnymy chastynkamy (Theoretical and technological bases of obtaining cast blanks from composite materials based on aluminum and zirconium with dispersed particles), Avtoref. dys. doktora tekhn. nauk. – Kyiv, 2007, 33 p. [in Ukrainian].
  12. Bunin K., Shapovalov V., Trofimenko V., VICHP: Molecular interactions and thermodynamics, 1972, pp. 639-640 [in English].
  13. Shapovalov V. Proceedings of the 1999 International symposium on liquid metal processing and casting, Аbstracts of Papers, Santa Fe, New Mexico, USA, February 21–24, 1999, pp. 330-343 [in English].
  14. Shapovalov V.I., Serdyuk V.P., Semik A.P., DAN USSR, 1981, No. 6, pp. 102-105 [in Russian].
  15. Boyko L., Shapovalov V., Proceedings of the 1997 International symposium on liquid metal processing and casting, Аbstracts of Papers, Santa Fe, New Mexico, USA, February 16-19, 1997, pp. 417-426 [in English].
  16. Shapovalov V. I., Serdyuk N. P. Izv. vuzov, Tsv. Metallurgiya, 1980, No. 2, pp. 90-93 [in Russian].
  17. Author's certificate No. 1725485 USSR. Sposob polucheniya penometallov [Method for producing foam metals], Shapovalov V. I., Serdyuk N. P., 1980 [in Russian].
  18. Boyko L.V. Metaloznavstvo ta obrobka metalív, 2001, No. 1-2, pp. 34-41[in Russian].
  19. Flemings M. Protsessy zatverdevaniya (Solidification processes), Moscow: Mir, 1977, 423 p. [in Russian].
  20. Shapovalov V., Porous and cellular materials for structural applications. MRS symposium proceedings, 1998, Vol. 521, pp. 281-290 [in English].
  21. Cellular Metals and Metal Foaming Technology Proceedings, Edited by J. Banhart, M.F. Ashby, N.A. Fleck, 2nd International Conference “MetFoam2001”, 18-20 June 2001, MIT-Verlag Bremen 2001, ISBN: 3-935538-11-1 [in English].
  22. Barigou M., Deshpande N.S. Foam control by acoustic and mechanical techniques, Abstract from 4th European Conference on Foams, Emulsions and Applications. 2002. [in English].
  23. Cellular Metals for Structural and Funtional Applications, Edited by G. Stephani, B. Kieback // 1st International Symposium, May 18-20, Dresden, Germany. 2005, 330 p. ISBN-13 ‏: 978-3816769316 [in English].
  24. Shapovalov V., Boyko L., Advanced Engineering Materials, 2004, Vol. 6, Issue 6, pp. 407-410 [in English]. https://doi.org/10.1002/adem.200405148
  25. U.S. Patent 5,181,549. Method for manufacturing porous articles, Shapovalov V., Filed Apr. 29, 1991, Patented Jan. 26, 1993 [in English].
  26. World Patent WO9811264. Method for the production of porous cast products, Naydek V., Pereloma V., Shapovalov V., Lenda Yu. Filed Sept. 16, 1996, Patented March 19, 1998 [in English].
  27. Shapovalov V. I., Metall i lit'ye Ukrainy, 2011, No. 3 (214), pp. 3–11 [in Russian].
  28. U.S. Patent Application Serial No. 60/956374. Method and apparatus for producing porous articles. Shapovalov V., Withers J., Filed Aug. 16, 2007. [in English].
  29. US. Patent application serial No. 60/956,374. Method and apparatus for producing porous articles. Shapovalov V., Withers J.– Filed: August 16, 2007. [in English].
  30. Shapovalov V.I., Eremenko N.D., Abstract of Papers International new business and high–tech research Conference,  3-5 September 1989, Finland, EAMI, pp. 1-12 [in English].
  31. U.S. Patent No. 5,181549. Method for Manufacturing Porous Articles. Shapovalov V., Publication date: January 26, 1993, Filed: April 04, 1991 [in English].
  32. German Patent No. DE4134337. Exhaust Gas Catalyst for Combustion Engines and Process for Making Same. Shapovalov V., Bichuya A., Eryomenko N., Publication date: January 28, 1993, Filed: October 17, 1991 [in English].
  33. Hyun S. K., Shiota Y., Murakami K., Nakajima H., Proc. Int. Conf. on Solid–Solid Phase Transformations’99 (JIMIC–3), ed. by Koiwa M., Otsuka K. and Miyazaki T, Japan Inst. Metals, Kyoto, 1999, pp. 341-344 [in English].
  34. Nakajima H., Prod. Tech., 1999, 51, pp. 60-62 [in English].
  35. Ichitsubo T., Tane M., Ogi H., University O., University I., Corporation I. and others, // Acta materialia. –2002. – Vol. 50. –  P. 4105-4115 [in English]. https://doi.org/10.1016/S1359-6454(02)00228-8
  36. https://www.lotus–t–s.co.jp/index.php?id=175
  37. http://english.imr.cas.cn/research/researchsystem/201907/t20190719_213198.html
  38. Wang X, Li Y X, Liu Y., Mater. Sci. Eng., 2007, A 444, pp. 306 [in English].
  39. Yanxiang LI, Xiaobang LIU, Acta Metallurgical Sinica , 2018, Vol. 54, No. 5, pp. 727–741[in English].  DOI: 10.11900/0412.1961.2018.00027
  40. Liu Y., Li Y., Wan J., Mech. Eng. China, 2007, 2, pp. 180-183[in English]. https://doi.org/10.1007/s11465-007-0030-x
  41. Jiang G., Li Y., Liu Y., Metall Mater Trans A, 2010, 41, pp. 3405-3411[in English]. https://doi.org/10.1007/s11661-010-0402-4
  42. http://www.npl.co.uk/npl/cmmt/metal_foams
  43. Hintz C. et al. in Metal Foams and Porous Metal Structures, Edrs. Banhart J., Ashby M.F., Fleck N.A. MIT Verlag, 1999, pp. 153-158 [in English].
  44. Niemeyer M., Haferkamp H., Bormann D.,  Metallschäume, WileyVCH Verlag, Weinheim, 2000, pp. 419-421[in English]. https://doi.org/10.1002/1521-4052(200006)31:6<419::AID-MAWE419>3.0.CO;2-K
  45. Drenchev L., Sobczak J., Malinov S., Sha W., Materials Science and Technology, 2006, 22,10, pp. 1135-1147 [in English]. https://doi.org/10.1179/174328406X118302
  46. Shapovalov V. I., Metall i lit'ye Ukrainy, 2011, No. 4 (215), pp. 3-9 [in Russian].
  47. Simone A. E., Gibson L. J., Acta mater.,1996, Vol. 44, No.4, pp. 1437-1447 [in English]. https://doi.org/10.1016/1359-6454(95)00278-2
  48. Kee A., Matic P., Wolla J., Materials Science and Engineering, 1997, A230, pp. 14-24 [in English]. https://doi.org/10.1016/S0921-5093(97)80110-4
  49. Kee A., Matic P., Popels L., Materials Science and Engineering, 1997, A225, pp. 85-95[in English]. https://doi.org/10.1016/S0921-5093(96)10878-9
  50. Shapovalov V.I., Vysotsʹkyy A.S., Konstruyuvannya, vyrobnytstvo ta ekskpluatatsiya silʹskohosporadrsʹkykh mashyn, 2007, Vol. 41, 2, pp. 87-94. [in Ukrainian].
  51. US Patent  No. 4381745. Porous burner diesel engine. Firey J.C., Publication date: May 3, 1983, filed: September 9, 1982 [in English].
  52. Vysotskiy A.S., Karpov V.Yu., Abstract of Paper VI mezhdunarodnoy nauchno–prakticheskoy konferentsii «Nauka i tekhnologii: shag v budushcheye–2010», Prague, Czech Republic, 2010, pp. 36-38 [in Russian].
  53. US Patent No. 6520219. Method and apparatus for storing compressed gas. Shapovalov V., Loutfy R, filed: August 31, 2001 [in English].
  54. Boyko L., Shapovalov V., Abstract of Paper 20th Annual brake colloquium and exhibition, October 6-9. – 2002, Phoenix, Arizona, Paper No. 72. [in English].