• Українська
  • English
  • Русский
ISSN 2664-2441 (Online)
ISSN 2073-9583 (Print)

Sensitivity to Mn content mechanical properties of phase composition of ADI

Metalozn. obrobka met., 2021, vol. 27 (100), 3-15
https://doi.org/10.15407/mom2021.04.003

K. О. Gogaev, Doctor of Technical Science, Corresponding Member of the NAS of Ukraine, gogaev@ipms.kiev.ua, ORCID: https://orcid.org/0000-0002-0042-1759
Yu. M. Podrezov, Doctor of  Physical and Mathematical Science, yupodrezov@ukr.net
S. M. Voloshchenko, Doctor of Technical Science, volosch@ipms.kiev.ua
M.G Askerov, Candidate of Technical Science (Ph.D.),  mukafatask@gmail.com
M.V. Minakov,  Candidate of Technical Science (Ph.D.),  vbyfrjd86@gmail.com

I. M. Frantsevich Institute for Problems of Materials Science, NAS of Ukraine, Kyiv

UDC 621.746.58
Download: PDF

Summary

The effect of manganese content on the phase composition and mechanical properties was studied on ADI materials that are isothermally quenchеd at different temperatures. ADI samples with Mn content of 0.78% and 0.24% were analyzed. The final structure of the cast iron was created by austenitizing heating at 900 ° C for 30 minutes. and subsequent isothermal quenching in liquid tin at temperatures of 310, 330, 350, 380 ° C for samples with high manganese content and at 350, 370 ° C for samples with low content.  It is shown that increasing the manganese content increases the amount of residual austenite under the same quenching conditions. This enhances the positive role of the TRIP effect on the hardening processes. In particular, ADI with a high content of Mn show a higher rate of strengthening at the initial region of loading diagram, higher hardness and increased damping capacity. Instead, due to the embrittlement action of manganese, such materials have lower mechanical characteristics, which determined fracture moment. It was found that for the same quenching conditions, deformation to fracture and toughness are reduced by half on samples with higher manganese content. The negative effect of manganese on the fatigue is less significant, because the embrittlement action is compensated by phase transformations in the crack head, which inhibits its spread under cyclic loading. Due to the fact that manganese enhances the positive role of the TRIP effect but decrease fracture résistance, it is proposed to use ADI materials with high Mn content in products that operate in conditions of wear but are not subject to extreme stress.

Keywords: ADI materials, manganese alloying, isothermal hardening, TRIP effect, retained austenite, strengthening,  hardness. damping capacity.

References

  1. Vashchenko K.I., Sofroni L.M., Magniyevyy chugun (Magnesium cast iron), Kyiv: Mashgiz, 1960, 485 p. [in Russian].
  2. Vashchenko K.I., Rudoy A.P. Liteynoye proizvodstvo, 1962, No. 6, pp. 24-27 [in Russian].
  3. Voloshchenko M.V. Termicheskaya obrabotka vysokoprochnogo chugunka  (Heat treatment of high-strength cast iron),  // Kyiv: Gostekhizdat USSR, 1961, 97 p. [in Russian].
  4. Bublikov V.B., Yasinskiy A.A., Syroporshnev L.N., Kozak D.S., Bachinskiy Yu.D., Protsessy littya,  2009, No. 4, pp. 17-24 [in Russian]. https://doi.org/10.17816/PAVLOVJ20094155-161
  5. Voloshchenko M.V., Litovko V.I., Zelenyy B.G., Metallovedeniye i termicheskaya obrabotka metallov, 1964, No. 7, pp. 20-23[in Russian].
  6. Naydek V.L., Gavrilyuk V.P., Neizhko I.G. Beynitnyy vysokoprochnyy chugun (Bainitic ductile iron). Kyiv: PTIMA NAN Ukrainy, 2008, 140 p.
  7. Voigt R.C., Loper C. R., Journal of Heat Treating, 1984, Vol. 3, pp. 291–309 [in English]. https://doi.org/10.1007/BF02833124
  8. Gohayev K.O., Podrezov Yu.M., Voloshchenko S.M. Novye oblasty yspolʹzovanyya vysokoprochnykh chuhunok (New areas of use of high-strength cast iron), Nauka pro materialy: dosyahnennya ta perspektyvy, T.1, Kyiv, Akademper., 2018,  652 c. [in Russian].
  9. Nofal A., Journal of Metallurgical Engineering, 2013, Vol. 2 Issue 1, pp. 1-18 [in English].
  10. Li X.H., Saal P., Gan W.M., Hoelzel M., Volk W., Petry W., Metallurcical and Materials Transactions, A, 2017, Vol. 49 (8), pp. 94-104 [in English]. https://doi.org/10.1007/s11661-017-4420-3
  11. Blonde R., Jimenez-Melero E., Zhao L., Wright J.P., Brück E. S., Materials Science and Engineering, A, 2014, Vol. 618, pp. 280-287 [in English]. https://doi.org/10.1016/j.msea.2014.09.008
  12. DeMoor E., Gibbs P.J., Speer J.G., Matlock D.K., AIST Trans., 2010,  Vol. 7, pp. 133-144 [in English].
  13. Voloshchenko S.M., Gohayev K.O.,. Podrezov Yu. M., Minakov M.V., Metaloznavstvo ta obrobka metaliv, 2020, No. 1, pp. 15-22 [in Ukrainian]. https://doi.org/10.15407/mom2020.01.003
  14. Voloshchenko S.M., Ahroperspektyva,  2006,  No. 7, pp. 50 – 51 [in Ukrainian].
  15. Saal P., Meier L., Li X. H., Hofmann M., Hoelzel M., Wagner J. N., Volk W., Metall. Mater. Trans., A, 2016, Vol. 47, pp. 661-671. [in English]. https://doi.org/10.1007/s11661-015-3261-1
  16. Bhople N., Patil S., Harne M., Dhande S., International Journal of Innovative Research in Science, Engineering and Technology, 2016, Vol. 5, Issue 2, pp. 1197-1211 [in English].
  17. Kowalski A.,  Biel-Gołaska M., Advanced Materials Research, 1998, Vol. 4-5, pp. 259-268 [in English]. https://doi.org/10.4028/www.scientific.net/AMR.4-5.259
  18.  Bublikov V.B., Yasinskiy A.A., Zelenaya L.A., Berchuk D.N., Medved S.N., Protsessy lit'ya,  2013, No. 5, pp. 101-107 [in Russian].
  19. Lugovskoy Yu.F., Problemy spets. Elektrometallurgii, 1987, No. 4, pp. 61-65[in Russian].
  20. Bonisch M., Calin M., Van Humbeeck J., Skrotzki W., Eckert J.,  Materials Science and Engineering, C, 2015, Vol. 48, pp. 511–520 [in English]. https://doi.org/10.1016/j.msec.2014.12.048
  21. Milman Yu.N. Galanov O.N.Chugunova S.I. Goncharova I.V. Opredeleniye mekhanicheskikh svoystv maloplastichnykh materialov metodom indentirovaniya (Determination of mechanical properties of low-plastic materials by indentation method), Ceramics 50, Polish ceramic bulletin 12. Krakov: pol'skoy akademii nauk, 1996, pp. 95-102 [in Russian].
  22. Podrezov Yu. M,, Romanko P.M., Kholyavko V.V, Marchenko N.M. Vpliv umov ízotermíchnogo gartuvannya na psavdopruzhnu povedínku beynítnogo chavunu. World Science. – 2019.– № 1(41).– S. 15-23[in English]. https://doi.org/10.31435/rsglobal_ws/31012019/6293
  23. Voloshchenko S.M., Gogaêv K.O., Podrezov Yu. M., Mínakov M.V., Askerov M.G., Lugovskoy Yu.F., Vestnike NTU "KHPI", Novyye resheniya v sovremennykh tekhnologiyakh, 2020, pp. 55-64 [in Russian].