• Українська
  • English
  • Русский
ISSN 2664-2441 (Online)
ISSN 2073-9583 (Print)

Crystal-geometrical features of the structure of cast and normalized steel with a ferrite-pearlite structure

Metalozn. obrobka met., 2019, Tom 90, No 2, cc.3-11
http://doi.org/10.15407/mom2019.02.003

A. Yu. Borisenko, Candidate of Technical Science (Ph.D.), asbor@ua.fm
G. V. Levchenko, Doctor of Technical Science, Professor, Head of Laboratory

V. N. Tkach*, Doctor of Technical Science
T. A. Zaitseva**

Nekrasov Iron and Steel Institute of NAS of Ukraine, Dnipro
* V. Bakul Institute for Superhard Materials NAS of Ukraine, Kiev
** National Metallurgical Academy of Ukraine, Dnipro

UDC 669.1.017:669.141.24:621.785

Download: PDF

Summary

Crystal-geometrical features of the structure of cast and normalized steel with 0.62 % of C content were studied using EBSD method. Inheritance link between the formation of pearlitic and ferritic-pearlitic structures with the structure of intercrystalline boundaries in cast and normalized steel were demonstrated. It was found that the austenite of cast and normalized steel undergoes plastic deformation in conformity with the mechanisms of sliding, twinning and grain boundary slippage. 72 % of low-angle (3... 15 ºС) and 28% of high-angle (20...60 ºС) intercrystalline boundaries are formed in cast steel. Normalization of cast steel leads to the formation of 23 % low-angle (5...15 ºС) and 77 % high-angle (20...60 ºС) intercrystalline boundaries. After normalization of steel the number of special boundaries  3… 13 increases from 1% to 7 % comparing to its cast state. The number of special boundaries is approximating the number of proeutectoid ferrite in cast and normalized steel.

Keywords: steel, normalization, structure, deformation, structural heredity.

References

1. Gulyayev A.P. Metallovedeniye (Metallurgy), Moskva: Metallurgiya, 1986, 544 p. [in Russian].

2. Novikov I.I. Teoriya termicheskoy obrabotki metallov (The Theory of Heat Treatment of Metals), Moskva: Metallurgiya, 1978, 392 p. [in Russian].

3. Kondratyuk S.Ye. Strukturoutvorennya, spadkovist i vlastyvosti lytoyi stali, (Structure Formation, Heredity and Properties of Cast Steel), Kyiv: Naukova dumka, 2010, 175 p. [in Ukraine].

4. Vasserman G., Greven I. Tekstury metallicheskikh materialov (Textures of metallic materials), Moskva: Metallurgiya, 1969, 655 p. [in Russian].

5. Varyukhin V.N., Pashinskaya Ye.G., Zavdoveyev A.V., Burkhovetskiy V.V. Vozmozhnosti metoda difraktsii obratnorasseyannykh elektronov dlya analiza struktury deformirovannykh metallov (The Potential of Backscattered Electron Diffraction Method for Analyzing the Structure of Deformed Metals), Kyiv: Naukova dumka, 2014, 175 p. [in Russian].

6. Borisenko A.Yu., Kononenko A.A., Babachenko A.I., Naumenko L.D. Dopovidi NAN Ukraїny, 2010. № 9, pp. 70-77 [in Russian].

7. Borysenko A., Shapovalov V. Mekhanika ruynuvannya materialiv i mitsnistі konstruktsiy (Mechanics of material destruction and structural strength), Lviv, 2014, pp. 641-646 [in Russian].

8. Kaybyshev O.A., Valiyev R.Z. Granitsy zeren i svoystva metallov (Grain Boundaries and Metal Properties), Moskva: Metallurgiya, 1987, 214 p. [in Russian].

9. Tushinskiy L.I. Teoriya i tekhnologiya uprochneniya metallicheskikh splavov (Theory and Technology of Metal Alloys Hardening), Novosibirsk: Nauka, 1990, 306 p. [in Russian].

10. Fedyukin V.K., Smagorinskiy M.Ye. Termotsiklicheskaya obrabotka metallov i detaley mashin (Thermocyclic Treatment of Metals and Machine Parts), Leningrad: Mashinostroyeniye, 1989, 255 p. [in Russian].

11. Lozinskiy M.G. Vysokotemperaturnaya metallografiya (High Temperature Metallography), Moskva: MASHGIZ, 1956, 312 p. [in Russian].

12. Sadovskiy V.D. Strukturnaya nasledstvennost v stali (Structural Heredity of Steel), Moskva: Metallurgiya, 1973, 208 p. [in Russian].