• Українська
  • English
  • Русский
ISSN 2664-2441 (Online)
ISSN 2073-9583 (Print)

Physical fundamentals of metallurgical heredity of alloys at melting and crystallization

Metalozn. obrobka met., 2016, Tom 77, No 1, cc.29-38
doi.org

P. Yu. Volosevich, Doctor of Physics and Mathematics
S. Ye. Kondratiuk*, Doctor of Technical Science, Professor

I. M. Frantsevich Institute for Problems of Materials Science, NAS of Ukraine, Kyiv
*Physico-Technological Institute of Metals and Alloys of NAS of Ukraine, Kyiv

UDC 669.004.13
Download: PDF

Summary

In line with modern view on melting and crystallization of pure metal of mono and polycrystalline states a model is proposed in which the relevant processes are considered from the standpoint of the general theory of nucleation as a superposition of features of changes in the number and size of 3 types on the temperature. The first is associated with the presence of a constant amount of crystallites (grains) of initial state, the size of which at melting gradually decrease with temperature. The second type of nuclei concern groups (clusters) of atoms with new order of interatomic bonds. The third type of nuclei belong to cluster with short range order of interatomic bonds which rapidly changes in comparison with initial state. The model proposed using synergetic approach allows to explain majority of experimental data and their dependence on temperature modes of heating and cooling, including the case of metallurgical heredity.

References

  1. Nikitin V.I., Nikitin K. V. Nasledstvennost v litykh splavakh, Moskva: Mashinostroyeniye, 2005, 476 p. [in Russian].
  2. Shpak A.P., Lisov V.I., Kunytskyy Yu.A. Krystalizatsiya i amorfizatsiya metalevykh system, Kyyiv: Akademperiodyka, 2002, 208 p. [in Russian].
  3. Nikonorov O.S., Metaloznavstvo ta obrobka metaliv, 2004, No 4, pp. 34 – 44 [in Ukrainian].
  4. 4. Kondratyuk S. Ye. Strukturoutvorennya, spadkovistʹ i vlastyvosti lytoyi stali, Kyyiv: Nauk. dumka, 2010, 175 p. [in Ukrainian].
  5. Yegorov N.T., Alimov V.I., Metall i lite Ukrainy, 2001, No 3-4, pp. 32 – 35  [in Russian].
  6. Gavrilin I.V., Metallurgiya mashinostroyeniya, 2002, No 4, pp. 10 – 16  [in Russian].
  7. Gavrilin I.V. Plavleniye i kristallizatsiya metallov i splavov, Vladimir: VlGU, 2000, 255 p. [in Russian].
  8. Gleyter G., Chalmers B. Bolsheuglovyye granitsy zoren, Moskva: Mir, 1975, 374 p. [in Russian].
  9. Mayboroda V.P., Shpak A.P., Kunitskiy Yu.A. Strukturnyye aspekty teorii plavleniya i zatverdevaniya, Kiyev: Akademperiodika, 2002, 124 p. [in Russian].
  10. Larikov L.N. Fizicheskiye osnovy prochnosti i plastichnosti metallov, Moskva: Metallurgizdat, 1963, 233 p. [in Russian].
  11. Bernal Dzh. D. Struktura zhidkostey, Moskva: Nauka, 1967, pp. 117 – 127. [in Russian].
  12. Ubellode A. Plavleniye i kristallicheskaya struktura, Moskva: Mir, 1969, 419 p.
  13. Rogotovskiy A.N. Issledovaniye klasternykh struktur v rasplavakh i ikh ispolzovaniye dlya sovershenstvovaniya metallurgicheskikh tekhnologiy. Dis. ... kandidata tekhnicheskikh nauk, Lipetskiy gosudarstvennyy tekhnicheskiy uníversitet, 2007, 162 p. [in Russian].
  14. Skrebtsov A.M., Protsessy litya, 2006, No 5, pp. 6 – 11 [in Russian].
  15. Bakay A.S., Materialovedeniye, 2009, No 6, pp. 2 – 7 [in Russian].
  16. Bagdasarov Kh.S. Vysokotemperaturnaya kristallizatsiya iz rasplava, Moskva: Fizmatlit, 2004, 160 p.